Opiskelija ymmärtää määrätyn integraalin pinta-alatulkinnan ja osaa laskea sen graafisesti ja symbolisesti sekä ratkaista yksinkertaisia integraalin käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia. Lisäksi opiskelija osaa ratkaista yksinkertaisia differentiaaliyhtälöitä. Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä voi olla vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana.
Edellisten lisäksi opiskelija ymmärtää pienten differentiaalien menetelmän niin, että osaa soveltaa integraalin käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta.
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta.
Lasse Enäsuo
Opettajan jakama materiaali
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS-laskin.
Etäopetus zoomin avulla, lähiopetus, itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, mahdolliset STACK-tehtävät, tentti.
Opintojakso arvioidaan asteikolla 0-5. Kokonaisarvosana määräytyy tuntikokeiden, kotitehtäväpisteiden ja kurssi loppukokeen kokonaispistemäärän perusteella (1. kokeessa). Uusintakokeet suoritetaan erillisenä kokonaisuutena. Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeen arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys.
Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, mahdollisten nettitehtävien ja kotitehtävien tekoa sekä kurssikokeeseen osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin (kotitehtävät 25%) sekä suorittaa opintojakson loppukokeen, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen.
Suomi
07.03.2022 - 01.05.2022
01.01.2022 - 06.03.2022
3 op
21TIETOA
Lasse Enäsuo, Miika Huikkola
Opetus alkaa lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. Opettajalta saa Moodle-avaimen.
Tietotekniikan tutkinto-ohjelma
TAMK Pääkampus
0-5
Opintojakson koe pidetään alustavasti pe 22.4.2022 tuntiaikaan.
Uusintaan osallistuminen edellyttää arvosanaa nolla .
1. uusinta 18.5.2022 klo 17.00-20.00
2. uusinta/korotus ke 8.6.2022 klo 17.00-20.00
Hyväksyttyä arvosanaa voi korottaa VAIN 2. uusintakokeessa (ei siis ensimmäisessä eikä myöhemmin)
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta (Pakki).
Uusintaan osallistuminen edellyttää arvosanaa 0.
Sairastapauksissa vaaditaan lääkärintodistus.
Poissaolo kokeesta vastaa hylättyä suoritusta.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu muun muassa:
- etäopetuksesta, jossa opettaja mukana
- Lähiopetuksesta, jossa opettaja on mukana
- ryhmätöistä (opettaja ei ole mukana)
- itsenäisestä työskentelystä (mm. kotitehtävät, STACK-tehtävät, opetusvideot)
- kokeesta
Opettajan pitämiä lähitunteja on n. 30 h.
- määrätty integraali
- graafinen tulkinta
- numeerinen integrointi
- integraalifunktio ja integrointikaavoja
- analyysin peruslause (määrätyn integraalin ja integraalifunktion yhteys)
- pienten differentiaalien menetelmä ja sovellustehtäviä
- differentiaaliyhtälöiden perusteet
- muuttujien erottaminen ja sovelluksia
- lineaarinen vakiokertoiminen differentiaaliyhtälö ja sovelluksia