•   Integral Transforms 5N00EG76-3011 01.09.2022-31.12.2022  3 cr  (21I254) +-
    Learning outcomes of the course unit
    Student is able to
    - use Laplace transform and apply it to solve differential equations.
    - express periodic functions as Fourier series.
    - interpret the relation between the spectrum and the Fourier coefficients of a function.
    Student understands the use of transfer function in describing the properties of linear systems.
    Student is familiar with the Fourier transform / FFT computer programs.
    Prerequisites and co-requisites
    Differential Calculus and Integral Calculus or similar skills
    Course contents
    Laplace transform formulas, use of Laplace transforms to solve differential equations, transfer function in describing the properties of linear systems. Representation of periodic functions as Fourier series, spectrum of function, use of computer programs in Fourier transforms/FFT.
    Assessment criteria
    Satisfactory

    Student is able to determine simple Laplace transforms with the aid of given formulas and calculator. He/she is able to solve simple applications that are similar to the model problems solved during the course. Student knows how to compute numerically coefficients for the Fourier series of periodical functions. Justification of solutions and using mathematical concepts may still be somewhat vague. Student takes care of his/her own studies and can cope with exercises with some help from the group.

    Good

    In addition, student is able to solve simple linear differential equations using Laplace transform and understands how Fourier series decomposes a periodic function to infinite series of waveforms with different frequencies. Student is also able to explain the methods of her/his solutions. Mathematical notations and concepts are mainly used correctly. Student is able to solve the given exercises independently and also helps other students in the group.

    Excellent

    In addition, student has an overall understanding of using course topics to solve various applications and the ability to present and justify the chosen methods of solution. Mathematical notations and concepts are used precisely. Student is motivated and also committed to help the group to manage the course.


    Name of lecturer(s)

    Jukka Suominen

    Language of instruction

    Finnish

    Timing

    01.09.2022 - 31.12.2022

    Registration

    01.08.2022 - 31.08.2022

    Credits

    3 cr

    Group(s)

    21I254

    Seats

    1 - 45

    Teacher(s)

    Jukka Suominen

    Unit, in charge

    Building Services Engineering

    Degree programme(s)

    Degree Programme in Building Services Engineering, Electrical Systems

    Office

    TAMK Main Campus

    Evaluation scale

    0-5