Student understands the basic concept of derivative and is able to solve simple applications that are similar to the model problems solved during the course. Student also knows how to interpret derivative in graphs and how to compute it numerically. Justification of solutions and using mathematical concepts may still be somewhat vague. Student takes care of his/her own studies and can cope with exercises with some help from the group.
In addition, student is able to apply derivative to basic technical problems, for example to optimization. Student is also able to explain the methods of her/his solutions. Mathematical notations and concepts are mainly used correctly. Student is able to solve the given exercises independently and also helps other students in the group.
In addition, student has an overall understanding of course topics. He/she can solve more demanding engineering problems and has the ability to present and justify the chosen methods of solution. Mathematical notations and concepts are used precisely. Student is motivated and committed to help the group to manage the course.
Ulla Miekkala
Opettajan Moodlessa jakama materiaali (sähköinen PLUSSA-materiaali, videot, interaktiiviset tehtävät, pdf-materiaalit, STACK-tehtävät)
Kaavasto: Tekniikan kaavasto, Tammertekniikka
Suositellaan hankittavaksi TI-nspire CX CAS/ TI-nspire CX II CAS -laskin. (not translated)
Lähiopetus (aloitus etäopetuksena zoomin avulla), itsenäinen opiskelu, tuntiharjoitukset ja kotitehtävät, videomateriaalit, nettitehtävät, tentti (not translated)
Opintojakso arvioidaan asteikolla 0-5. Opintojakso suoritetaan kokeilla, nettitehtävillä ja viikoittain tarkastettavilla harjoitustehtävillä, joiden tekeminen vaikuttaa arvosanaan. Kotitehtäväpisteiden saamiseksi on osallistuttava kotitehtävien tarkistukseen (tarkemmat ohjeet Moodlessa).Opintojaksoon saattaa sisältyä myös ryhmässä tehtäviä osioita. Kokeiden arvostelussa otetaan huomioon paitsi ratkaisun oikeellisuus myös ratkaisutapa ja esitystavan selkeys. Jo arvosanan 0 saaminen edellyttää säännöllistä läsnäoloa koko opintojakson ajan, nettitehtävien ja kotitehtävien tekoa sekä kurssikokeisiin osallistumista. Säännöllinen läsnäolo tarkoittaa, että tunnilla ollaan aina, ellei ole perusteltua syytä (esim. sairaus) olla pois. Varma läpipääsyraja on 1/3 kurssikokeen ja nettitehtävien yhteenlasketusta maksimipistemäärästä.
Harjoitustehtävillä saa lisäpisteitä oheisen taulukon mukaan:
yli 30% : 1
yli 50%: 2
yli 70% : 3
yli 90% : 4
Harjoitustehtäväpisteet eivät vaikuta kurssin läpipääsyyn vaan niillä voi korottaa arvosanaa. Lopullinen arvosana määräytyy koepisteiden, nettitehtävien ja harjoitustehtäväpisteiden yhteismäärästä sekä osallistumisaktiivisuudesta. Harjoitustehtäväpisteitä ei huomioida enää uusinta- ja korotustenttien yhteydessä.
Arviointikriteeri -hylätty(0):
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen. (not translated)
Finnish
10.01.2022 - 27.02.2022
02.12.2021 - 11.01.2022
3 cr
21I112B
Ulla Miekkala
Opetus alkaa viikolla 2 lukujärjestyksen mukaisesti.
Opintojaksoon on Moodle-toteutus. (not translated)
TAMK Mathematics and Physics
Degree Programme in Mechanical Engineering
TAMK Main Campus
0-5
Opintojakson koe pidetään 2x.2.2022 tuntiaikaan (alustava aika, voi tulla muutoksia).
Uusintaan osallistuminen edlyttää arvosanaa nolla.
1. uusinta 30.3.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
2. uusinta/ korotus 13.4.2022 klo 17.00-20.00 (paikka ilmoitetaan ennen tenttiä)
Hyväksyttyä arvosanaa voi korottaa 2. uusintakokeessa.
Kokeissa saa olla mukana vain opettajan erikseen määrittelemät materiaalit ja välineet.
Uusintakokeeseen ja korotukseen ilmoittaudutaan TAMKin tenttijärjestelmän kautta. (not translated)
Opiskelijan keskimääräinen työmäärä on 80 h, joka koostuu:
-opetuksesta, jossa opettajaja mukana (Zoom-tunnit)
-ryhmätöistä (opettaja ei ole mukana)
-itsenäisestä työskentelystä (mm. kotitehtävät, nettitehtävät, opetusvideot)
-kokeesta
Opettajan pitämiä lähitunteja on n. 30 h (not translated)
-raja-arvo ja jatkuvuus
-derivaatta funktion ominaisuuksien kuvaajana
-muutosnopeustulkinta ja graafinen tulkinta
-derivaatan laskeminen numeerisesti ja derivointikaavojen avulla
-derivaatan sovelluksia mm. virhearviot ja ääriarvotehtävät (not translated)
Opiskelija osallistuu säännöllisesti opetukseen ja opintojakson työmuotoihin sekä suorittaa opintojakson kokeisiin, mutta ei muuten saavuta tyydyttävään arvosanaan vaadittuja kriteerejä. Nollan saaminen mahdollistaa osallistumisen kurssin uusintakokeeseen. (not translated)
Opiskelija ymmärtää derivaatan funktion muutosnopeutena ja osaa laskea sen graafisesti, numeerisesti ja symbolisesti sekä ratkaista yksinkertaisia derivaatan käyttöön perustuvia sovelluksia, jotka ovat käsiteltyjen tehtävien kaltaisia.Ratkaisujen perusteluissa ja matemaattisissa käsitteissä ja merkinnöissä on vielä haparointia. Opiskelija ottaa vastuun omasta opiskelustaan ja suoriutuu tehtävistä ryhmän tukemana. (not translated)
Edellisten lisäksi opiskelija osaa soveltaa derivaatan käyttöä erilaisiin tilanteisiin ja osaa perustella ratkaisut. Matemaattisia merkintöjä ja käsitteitä käytetään pääsääntöisesti oikein. Opiskelija suoriutuu annetuista tehtävistä itsenäisesti ja ottaa vastuun myös ryhmän suoriutumisesta. (not translated)
Edellisen lisäksi opiskelijalla on kokonaisvaltainen käsitys opintojakson asioista ja niiden käytöstä ongelmien ratkaisuun sekä taito esittää ja perustella loogisesti valitut ratkaisut sekä käyttää oikeita matemaattisia merkintöjä. Opiskelija on erittäin motivoitunut ja ottaa sitoutuneesti vastuuta omasta ja ryhmän suoriutumisesta. (not translated)